Assessment Genotype-Environment Interaction Biplot Gge Applying For Sugar Cane In Venezuela
Keywords:
GREG, IGA, mega-environment, saccharum spp hybridAbstract
The selection of sugar cane cultivars adapted to different environments becomes difficult when there is genotype x environment interaction (IGA). Recently, it has been used a new multivariate model called GGE biplot (SREG and GREG) for the interpretation of the IGA. In this model, linear terms of genotypes or environments are not considered individually and are added to the multiplicative term of genotype x environment interaction. The objective of this study was to identify mega-environments (MA), genotypes and superior environments for sugarcane yield (tons of sugarcane per hectare, TCH) and Pol % sugarcane by means of the regression models by sites (SREG) and by genotypes (GREG). There were used the data coming from twenty sugar cane genotypes evaluated in eight localities during two harvesting cycles. The GGE biplot based on SREG for TCH outlines two mega environments, the MA-1 is conformed by the Quebrada Arriba and FUNDACAÑA localities. The most productive genotypes of these locations were V99-208 and V98-62. The MA-2 grouped the localities Las Majaguas, Montaña Verde, Santa Lucía, Castillera and Ivonne. The most outstanding genotypes were V98-120, V00-50 and V91-15. In Pol % caña, the best genotypes were V99-245, CP74-2005, B80-408, V98-86 and V99-208 for a single MA that includes all localities.
Downloads
References
Acevedo, M., Reyes, E., Castrillo, W., Torres, O., Marín, C., Álvarez, R., … Torres, E. (2010). Estabilidad fenotípica de arroz de riego en Venezuela utilizando los modelos LIN-BINNS y AMMI. Agronomía Tropical. 60(2): 131-138.
Akcura, M., Taner, S. y Kaya, Y. (2011). Evaluation of bread wheat genotypes under irrigated multi-environment conditions using GGE biplot analyses. Agricultura, 98(1): 35-40.
Asfaw, A., Alemayehu, F., Gurum, F. y Atnaf, M. (2009). AMMI and SREG GGE biplot analysis for matching varieties onto soybean production environments in Ethiopia. Scientific Research and Essays, 4(11): 1322-1330.
Balzarini, M. y Di Rienzo, J. (2011). InfoGenversión 2011. FCA, Universidad Nacional de Córdoba, Argentina. Recuperado de: http://www.info-gen.com
Bastidas, L., Rea R., De Sousa-Vieira, O., Briceño, R. y Hernández, E. (2009). Potencial azucarero y panelero de cinco cultivares de caña de azúcar en el Valle de Santa Cruz de Bucaral, Estado Falcón, Venezuela. Agronomía Tropical, 59(2): 137-148.
Chavanne, E., Ostengo, S., García, M. y Cuenya, M. (2007). Evaluación del comportamiento productivo de cultivares de caña de azúcar (Saccharum spp) a través de diferentes ambientes en Tucumán, aplicando la técnica estadística “GGE biplot”. Revista Industrial y Agrícola de Tucumán, 84(2): 19-24.
Chen, J. (1997). Manual del azúcar de caña. Para fabricantes de azúcar y químicos especializados. México: Editorial Limusa, S.A.
Crossa, J., Cornelius, P. y Yan, W. (2002). Biplots of linearbilinear models for studying crossover genotype x environment interaction. Crop Science. 42: 619-633.
Flores, F., Moreno, M. y Cubero, J. (1998). A comparison of univariate and multivariate methods to analyze G x E interaction.
Field Crops Research. 47: 117-127. Ibáñez, M., Cavanagh, M., Bonamico, N. y Di Renzo, M. (2006).
Análisis gráfico mediante biplot del comportamiento de híbridos de maíz. RIA, 35(3): 83-93.
Jalata, Z. (2011). GGE-biplot analysis of multi-environment yield trials of barley (Hordeium vulgare. L.) genotypes in Southeastern Ethiopia Highlands. International Journal of Plant Breeding and Genetics, 5(1): 59-75.
Kundus, M., Almorza, D., Boggio, R. y Salerno, J. (2010). Statistical models for evaluating the genotype-environment interaction in maize (Zeas mays L.). ΦYTON, 79: 39-46.
Nassir, A. y Ariyo, O. (2011). Genotype x environment interaction and yield- stability analysis of rice grown in tropical inlandswamp. Notulae Botanicae Horti Agrobotanici Cluj, 39(1): 220-225.
Puchades, Y., Rodríguez, R., Bernal, N., Jorge, H. y García, H. (2012). Métodos estadísticos en el estudio de la interacción genotipo–ambiente en la caña de azúcar. Ciencia en su PC, 1:47-60.
Rao, P., Reddy, P., Rathore, A., Reddy, B. y Panwar, S. (2011). Application GGE biplot and AMMI model to evaluate sweet sorghum (Sorghum bicolour) hybrids for genotype x environment interaction and seasonal adaptation. Indian Journal of Agricultural Science, 81(5): 438-44.
Rea, R. y De Sousa-Vieira, O. (2002). Genotype x environment interaction in sugarcane yield trials in the central- western region of Venezuela. Interciencia, 27(11): 620-624.
Rea, R., De Sousa-Vieira, O., Ramón, M., Alejos, G., Díaz, A. y Briceño, R. (2011). AMMI analysis and its application to sugarcane regional trials in Venezuela. Sugar Tech, 13(2): 108- 113.
Roa, S., Barboza, C. y Zambrano, A. (2010). Estabilidad del rendimiento de variedades de papa (Solanum tuberosum L.) para procesamiento industrial en el estado Táchira, Venezuela. Revista de la Facultad de Agronomía de la Universidad del Zulia, 27(2): 173-192.
Yan, W. y Tinker, N. (2006). Biplot analysis of multi-environment trial data: Principles and applications. Can. J. Plant Science. 86: 623-64.
Yan, W. (2011). GGE Biplot vs. AMMI graphs for genotypeby- environment data analysis. Journal of the Indian Society of Agricultural Statistic, 65(5): 181-193.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.