Proteases synthesized by microorganisms used in the production of cheeses
Keywords:
Protease ; peptides; casein ; fungi ; asparticAbstract
Proteases are fundamental elements in the physiological activities of living beings, plants, animals, bacteria, fungi and viruses, where their presence is significant, both in life and in death, both in reproduction and in decomposition. Proteases specifically attitudes on peptide bonds that make up proteins and polypeptides, are classified within the group of hydrolases, due to their form of action they can be exopeptidases or endopeptidases, due to their pH they can be acidic, neutral or alkaline, depending on the amino acid or element present on your active site. They are very versatile in their application, the pharmaceutical, food, chemical, being the first of them the most important at the research level, so it implies for human health. Proteases of interest in today's world are being investigated and produced under controlled conditions from microorganisms, with bacteria being the best use for their culture in submerged fermentation, it is easier to control, scale and recover. The research interest is focused on decreasing costs using economic substrates, improving production yields and on the use of bioinformatics through omics, proteomics and recombinant DNA tools to find the most productive, most specific species, more resistant. This review evidences works developed in the production of proteases and their application, especially in the field of question production.
Downloads
References
ALAVI, F. y MOMEN, S. (2020). Aspartic proteases from thistle flowers: Traditional coagulants used in the modern cheese industry. International Dairy Journal Volume 107.
ALVES, M. H., CAMPOS-TAKAKI G. M., OKADA K., FERREIRA, I. and MILANEZ I. (2005). Detection of extracellular protease in Mucor species. Rev Iberoam Micol; 22: 114-117.
ARBITA, A.,NICHOLAS, A. PAUL,J. ,JIAN Z., (2020). Extracción, purificación parcial y caracterización de proteasas de algas rojas Gracilaria edulis con sitios de escisión similares en κ-caseína como cuajo de ternera. Química de AlimHYPERLINK "https://www.sciencedirect.com/science/journal/03088146"entos, Volumen 330.
ASKER M.S., MAHMOUD G., SHEBWY El, ABD EL AZIZ S. (2013). Purification and characterization of two thermostable protease fractions from Bacillus megaterium. Journal of Genetic Engineering and Biotechnology.11, 103–109.
BEG, K., GUPTA R. (2003). Purification and characterization of an oxidation-stable, thiol-dependent serine alkaline protease from Bacillus mojavensis. Enzyme and Microbial Technology 32, 294–304.
COPETTI, V. (2019). Fungi as industrial producers of food ingredients. Current Opinion in Food Science, 25:52–5.
GONÇALVES DOS SANTOS,J.; HARUMI, H. (2017). Microbial proteases: Production and application in obtaining protein hydrolysates. Food Research International.
GUO,HYPERLINK "https://www.sciencedirect.com/science/article/abs/pii/S0308814619300056#!"Tu Tao, PENG Y.,HYPERLINK "https://www.sciencedirect.com/science/article/abs/pii/S0308814619300056#!"YARU W., HYPERLINK "https://www.sciencedirect.com/science/article/abs/pii/S0308814619300056#!"YAXIN R., BIN Y., HUIYING L. (2019). High-level expression and characterization of a novel aspartic protease from Talaromyces leycettanus JCM12802 and its potential application in juice clarification. Food ChemistryVolume 281, Pages 197-203.
GURUMALLESH P., KAMALINI A., BASKAr R., SHANMUGAPRAKASH M. (2019). A systematic reconsideration on proteases. Review International Journal of Biological Macromolecules 128; 254–267. Recuperado en: Http://merops.sanger.ac.uk.
HSIAO N.W. ;CHEN Y.; KUAN Y.S.; LEE Y.; LEE S. K.; CHAN, H. H.; KAO C.H. (2014). Purification and characterization of an aspartic protease from the Rhizopus oryzae protease extract, Peptidase R. Electronic Journal of Biotechnology 17 89–94.
IQBAL ASIF, HAKIM AL, MD., SADDAM HOSSAIN MOHAMMAD REJAUR RAHMAN, ISLAM KAMRUL, MD. JAHED AHMED FAISAL AZIM, ASSADUZZAMAN MD., MD. HOQ MOZAMMEL AND KALAM AZAD ABUL.(2018).Partial purification and characterization of serine protease produced through fermentation of organic municipal solid wastes by Serratia marcescens A3 and Pseudomonas putida A2. Journal of Genetic Engineering and Biotechnology 16, 29–37.
KUMAR and TAKAG .(2000). Proteasas alcalinas microbianas: desde un punto de vista bioindustrial. HYPERLINK "https://www.researchgate.net/journal/0734-9750_Biotechnology_Advances"Biotechnology Advances 17 (7): 561-94.
LAKOWITZ A.;GODARD T., BIEDENDIECK R. KRULL R. (2018). Mini review: Recombinant production of tailored bio-pharmaceuticals in different Bacillus strains and future perspectives. European Journal of Pharmaceutics and Biopharmaceutics, Volume 126, Pages 27-39.
LI SHUANG ; XIAOFENG YANG ; SHUAI YANG ; MUZI ZHU; XIAONING WANG (2012). Technology Prospecting on Enzymes: Application, Marketing and Engineering. Computational and Structural Biotechnology. Journal Volume 2, Issue 3.
MARATHE,S. K.; ARUN V. M.;PRASHANTH A.;PARVEEN N. ;CHAKRABORTY, S.; NAIR S.S. (2018). Isolation, partial purification, biochemical characterization and detergent compatibility of alkaline protease produced by Bacillus subtilis, Alcaligenes faecalis and Pseudomonas aeruginosa obtained from seawater samples. Journal of Genetic Engineering and Biotechnology 16, 39–46.
PREZZI, L.;DEODATO DE SOUZA M.;SILVA M.; FIGUEIREDO,T.; ROLDAN, R. ;SALAS, L.; SILVA DE OLIVEIRA A. ; BENEDETA ,R., GUEDES P.; VIANA PONTUAL E. and NAPOLEÃO, H. (2018). Purification and characterization of a protease from the visceral mass of Mytella charruana and its evaluation to obtain antimicrobial peptides. Food Chemistry 245; 1169–1175.
PUENTE, X. ; SÁNCHEZ, L.; OVERALL, C. (2003). Human and mouse proteases: a comparative genomic approach. Nat Rev Genet 4, 544–558. https://doi.org/10.1038/nrg1111.
PURUSHOTHAMAN, K.;SAGAR KRISHNA B.; ;GOPAL, M.; APPU RAO, G. (2019). Aspartic protease from Aspergillus niger: Molecular characterization and interaction with pepstatin. A International Journal of Biological Macromolecules, Volume 139, Pages 199-212. https://doi.org/10.1016/j.ijbiomac.2019.07.133.
RAMÍREZ ,J.y ACEVES M. (2014). Enzimas: ¿qué son y cómo funcionan?, Vol. 15; Núm. 12; ISSN 1607 – 6079. Recuperado en: http://www.revista.unam.mx/vol.15/num12/art91/#
RAWLINGS, D.; DOMINIC, P. T.; Alan J. BARRETT; MEROPS: la base de datos de peptidasa. (2004). Nucleic Acids Research, Volumen 32, Issue suppl_1, páginas D160 – D164. Recuperado en: https://doi.org/10.1093/ nar / gkh071
SATHISHKUMAR R.; GNANAKKAN A.;JEGANATHAN A. (2014). Production, purification and characterization of alkaline protease by ascidian associated Bacillus subtilis GA CAS8 using agricultural wastes. Biocatalysis and Agricultural Biotechnology.
SETHI BIJAY K.; ARIJIT J., NANDA PRATIVA K, DAS MOHAPATRAC PRADEEP K, SAHOO SANTI L. (2016). Thermostable acidic protease production in Aspergillus terreus NCFT 4269.10 using chickling vetch peels. Journal of Taibah University for Science 10,571–583.
SILVA MARIA Z, B. OLIVEIRA JOÃO P, RAMOS MÁRCIO V, DAHYPERLINK "https://www.sciencedirect.com/science/article/abs/pii/S030881461931698X#!"VI F. FARIAS, CHAYENNE A.DE SÁ, JULIANA A.C.RIBEIRO, AYRLES F.B.SILVA, JEANLEX S. DE SOUSA, RAFAEL A.ZAMBELLI, ANA C. DA SILVA, GILVAN P. FURTADO, THALLES B. GRANGEIRO, MIRELE S.VASCONCELOS, SANDRO R. SILVEIRA,CLEVERSON D. T. FREITAS, (2020). Biotechnological potential of a cysteine protease (CpCP3) from Calotropis procera latex for cheesemaking. Food Chemistry Volume 307.
SINGH, S.; BAJAJ, BK. (2017). Espectro de aplicación potencial de proteasas microbianas para producción industrial limpia y ecológica.
Energ. Ecol. Reinar. 2, 370–386. Recuperado en:
https://doi.org/10.1007/s40974-017-0076-5.
SOLERA JIMÉNEZ, F., RODRÍGUEZ, A. y SOTO, B. (2010). Evaluación de la producción de proteasas en dos cepas de Mucor sp. Por fermentación sumergida empleando dos tipos de medio de cultivo. Uniciencia 24 pp. 63-68
SUMANTHA ALAGARSAMY; CHRISTIAN LARROCHE AND ASHOK PANDEY (2006). Microbiology and Industrial Biotechnology of Food-Grade Proteases: A Perspective. Food Technol. Biotechnol.; 44, (2) 211–220.
TAVANO, O. L. (2013). Review Protein hydrolysis using proteases: An important tool for food biotechnology. Journal of Molecular Catalysis B: Enzymatic. Volume 90, Pages 1-11. Recuperado en: https://doi.org/10.1016/j.molcatb.2013.01.011
Tundo G. R.; D. SBARDELLA ; A.M. SANTORO; HYPERLINK "https://www.sciencedirect.com/science/article/pii/S0163725820301078#!"A. COLETTA ; F. ODDONE ; G. GRASSO; D. MILARDI ; P.M. LACAL; HYPERLINK "https://www.sciencedirect.com/science/article/pii/S0163725820301078#!"S. MARINI; R. PURRELLO; HYPERLINK "https://www.sciencedirect.com/science/article/pii/S0163725820301078#!"G. GRAZIANI ; HYPERLINK "https://www.sciencedirect.com/science/article/pii/S0163725820301078#!"M. COLETTA (2020). El proteasoma como objetivo farmacológico con múltiples potencialidades . En Adrio, JL; Demain, AL (2014). Enzimas microbianas: herramientas para procesos biotecnológicos. Biomoléculas, 4, 117-139.
VIGUERAS, Y. S. ;TOVAR ,X.; RAMÍREZ, M. Del R. y MERCADO, Y. (2019). Capítulo I Enzimas proteolíticas: Generalidades y la importancia de las aspartil proteasas fúngicas. DOI: 10.35429/H.2019.4.1.15.
ZHANG G.; WANG H.; ZHANG X. NG T. (2010). Helvellisin, a novel alkaline protease from the wild ascomycete mushroom Helvella lacunosa. J. Biosci. Bioeng.109, 20–24. 10.1016/j.jbiosc.2009.06.022.
ZHENGLIUFENG, HYPERLINK "https://www.sciencedirect.com/science/article/pii/S0023643819313325#!"XINYING YU,HYPERLINK "https://www.sciencedirect.com/science/article/pii/S0023643819313325#!"CHANGHAO WEI,LEYUN QIU,CHENGWEI YU,QIAN XING,YAWEI FAN, ZEYUAN DENGHYPERLINK "https://www.sciencedirect.com/science/article/pii/S0023643819313325#!". (2020). Producción y caracterización de una nueva proteasa alcalina a partir de un recién aislado Neurospora crassa a través de la fermentación en estado sólido. LWT; Volumen 122.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.