Dynamic adjustment of energy consumption for real-time tasks by integrating feedback planning and multi-frequency control

Authors

  • Alfonso S. Alfonsi University of Oriente
  • Jesús Pérez Territorial Polytechnic University of State of Aragua "Federico Brito Figueroa".

Keywords:

Adjustment, energy, feedback

Abstract

The energy consumption of the autonomous real-time control embedded systems is a subject of openness at a technological level, it affects the operation time due to the use of batteries for its feeding, and it affects the temperature, causing undesired behaviors. A multi-frequency control strategy is designed to regulate a computational resource, such as the processor, by dynamically assigning the computation time, globally, to all instances of a task, or locally, to each instance of execution, adding inter- and intra-attribute adjustment characteristics, with the intention of scaling the speed of the processor, and therefore, the energy consumption. It resorts to planning fed back with energy savings, which uses control theory to plan the resources of a computer system. As well as, the guidelines of the multi-frequency control, the dynamic scaling of voltage/frequency, and the techniques for the utilization of the dynamic idle time. The real time tasks considered are periodically critical. A set of tasks for comparative tests was taken to validate the operation, varying the computation times consumed. The global inter-task and local inter/intrathora behaviour, give an energy consumption from 44.70% to 90.00%, and 42.00% to 86.66%. It is concluded that the assignment of the computation times is operated in a natural way by the multi-frequency control loop, without violating the time restrictions, providing effects in the energy consumption by the tasks.

Downloads

Download data is not yet available.

References

M. Weiser, Welch B., Demers A. y Shenker S. 1994. Scheduling for reduced CPU energy. 1st Symposium on Operating Systems Design and Implementation, Monterrey, California.

Piguet C. 2006. Low-power CMOS circuits: Technology, logic design and CAD tools. CRC Press, Fl.

X. Hu y Quan G. 2007. Designing embedded processors – A low power perspective. En: J. Henkel and S. Parameswaran (eds.), Springer, 219-229.

J. Hellerstein, Diao Y., Parekh S. y Tilbury D. 2004. Feedback control of computing systems. Wiley-Interscience, Hoboken, USA.

F. Xia y Sun Y. 2008. Control and scheduling codesing-flexible resource management in real-time control systems, Springer, Berlin, Heidelberg.

Y. Zhu y Muller F. 2006. Exploting synchronous and asynchronous DVS for Feedback EDF Scheduling on an Embedded Platform.

ACM Trans. Embedded Computing Systems 5:1-24. C. Scordino. 2007. Dynamic voltage scaling for energyconstrained real-time systems. Ph.D Thesis. Dipartimento di Informatica, Universitá Di Pisa, Pisa, Italy.

T.T. Chantem, Hu X.S., Lemmon M.D. 2009. Generalized Elastic Scheduling for Real-Time Tasks. IEEE Transactions on Computers 58(4):480-495.

L. Niu. 2011. Energy efficient scheduling for real-time embedded systems with QoS guarantee. Real-Time Systems 47(2): 75-108.

Y. Zhu. 2005. Dynamic voltage scaling with feedback EDF scheduling for real-time embedded systems. Ph.D Thesis. Department of Computers Science, North Carolina State

G. Buttazo. 2005. Rate Monotonic vs. EDF: Judgment Day. Real Time Systems 29:5-26.

F. Xia, Tian Y-C, Sun Y. y Dong J. 2008. Control-theoretic dynamic voltage scaling for embedded controllers. IET Computer and Digital Techniques 2(5): 377-385.

L. Sha, Abdelzaher T., Arzén K.-E, Cervin A., Baker T., Burns A., Buttazzo G., Caccamo M., Lehoczky J. y Mok A. 2006. Real time scheduling theory: A Historical Perspective. Real-Time Systems 28(2-3):101-155.

F. Xia, Ma L., Zhao W., Sun Y. y Dong J. 2009. Enhanced energyaware feedback scheduling of embedded control systems. Journal of Computers 4(2): 103-111.

J. Salt y Camiña C. 2001. Control digital con muestreo no convencional: Modelado, análisis y diseño de reguladores con estructura no convencional. Proyecto Investigador. Dpto. Ingeniería de Sistemas y Automática. Universidad Politécnica de Valencia, Valencia, España.

J. Salt y Albertos P. 2005. Model-based multirate controllers design. IEEE Trans. on Control System Technology 6(3): 988-997.

A. Alfonsi, Pérez J. y Alfonsi A.R. 2009. Arquitecturas de control para la planificación de tareas de tiempo real con ahorro energético en procesadores de voltaje variable. Proyecto Investigación.

Grupo de Investigación Arquitecturas de Sistemas de Control, Universidad de Oriente, Barcelona, Venezuela.

A. Alfonsi. 2010. Planificador de tareas de tiempo real realimentado con ahorro energético basado en control con muestreo no convencional. Proyecto Tesis Doctoral. Postgrado en Instrumentación. Facultad de Ciencia. UCV Caracas.

A. Alfonsi, Pérez J., Alfonsi A.R. y Yánez R. 2012. Planificador de tiempo real realimentado multifrecuencial con ahorro de energía en sistemas empotrados. Mem. 5to Congreso Iberoamericano de Estudiantes de Ingeniería Eléctrica (V CIBELEC 2012). Mérida, CONT-08 – CONT-15. Disponible desde internet: http://www.cibelec.org.ve/2012/Docs/Memorias/Control.pdf

R. Yánez y Zavarce C. 2009. Desarrollo sustentable: ¿Desafío o compromiso? Revista Ingeniería Industrial. Actualidad y Nuevas Tendencias 1(3):73-85.

T. Abdelzaher, Diao Y., Hellerstein J., Lu C. y Zhu X. 2008. Introduction to control theory and its application to computing systems. Performance Modeling and Engineering. En: Zhen Liu, Cathy H. Xia (eds.), Springer Science+Business Media, LLC. New York.

Y. Shin, Choi K. y Sakurai T. 2001. Power-conscious scheduling for real-time embedded systems design. VLSI design. Overseas Publisher Association 12(2):139-150.

M. Moncusí. 2005. Ahorro energético en la planificación de sistemas en tiempo real. Tesis de Doctorado. Universidad Politécnica de Cataluña. Barcelona. 2005. Disponible desde internet: http://www.tesisenxarxa.net/TDX-0601106-122458/index.html

Y. Choi, Chang N. y Kim T. 2007. DC–DC converter-aware power management for low-power embedded systems. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems 26(8): 1367-1381.

D. Rakhmatov. 2008. Energy budget approximations for batterypowered systems with a fixed schedule of active intervals. IEEE Trans. on Very Large Scale Integration Systems 16: 985 – 998.

H.W. Chang, Chang W.H. y Tsai C.H. 2009. Integrated singleinductor buck-boost or boost-boost DC-DC converter with power-distributive control. Proc. Int. Conf. on Power Electronics and Drive Systems. Taipei, 1184-1187.

C. Xian, Lu Y-H and Li Z. 2008. Dynamic voltage scaling for multitasking real-time system with uncertain execution time.

IEEE Trans. on Computer-Aided Design of Integrate Circuits and Systems 27(8):1467-1478.

Published

2023-09-26

How to Cite

Alfonsi, A. S., & Pérez, J. (2023). Dynamic adjustment of energy consumption for real-time tasks by integrating feedback planning and multi-frequency control. Observador Del Conocimiento, 3(3), 11–20. Retrieved from https://revistaoc.oncti.gob.ve/index.php/odc/article/view/310

Issue

Section

Artículos