Prospective adjustment of a telematics system

Authors

Keywords:

RED (Random Early Detection), TCP (Transmission Control Protocol), RED variant, state variables, stability

Abstract

Congestion control is a key tool in telematic networks. Here it is present a prospective study of a parameter adjustment method of the TCP-RED telematics system (wired networks) to validate its potential in congestion control. It is reported that the TCP-RED system adjustment parameters are problematic. The adjustment method is an alternative to control theory, using state variables and the concept of stability in discrete systems, for networks which use TCP-RED. The “Scanning” methodology is used by consulting associated works and the FODA matrix, to studies generalities of the RED variants, which have grown significantly in the world of data networks. Using the FODA matrix of the parameter tuning method, one can see the performance landscape of the network and of some relatively new variants of the legacy RED family. Finally, variants of RED and TCP are found for congestion control with different applications and the effectiveness of the method of parameter adjustment in telematic networks for congestion control is concluded.

Downloads

Download data is not yet available.

References

Abu-Shareha, A. (2019). Enhanced Random Early Detection using responsive Congestion indicadors. IJACSA, 10(3). https://thesai.org/Publications/ViewPaper?Volume=10&Issue=3&Code=IJACSA&SerialNo=47

Ahmed, A. y Nasrelden, N. (2018). New congestion control algorithm to improve computer network performance. 2018 International Conference on Innovate Trend in Computer Engineering. Aswan, pp. 87-93. https://ieeexplore.ieee.org/document/8316605/

Baena, G. (2016). Prospectiva: sus métodos y técnicas. Instituto de Administración Pública del Estado de México, A.C. https://iapem.edomex.gob.mx/editorial/revistas/2016LPSMT.pdf

Betancourt, R. (2022). Viendo el futuro a través de la prospectiva tecnológica. Revista Observador del Conocimiento, 7 (3), pp. 144-163.

Danladi, S. y Ambursa, F. (2019). Dyred: an enhanced random early detection based on a new adaptive congestion control. ICECCO. Nigeria, pp. 1-5. https://www.semanticscholar.org/paper/DyRED%3A-An-Enhanced-Random-Early-Detection-Based-on-Danladi-Ambursa/cbc8967796e5c56b899cafb69a9e5df22ce9e594

Dorf, R. y Bishop, R. (2008). Modern Control Systems. Prentice Hall, USA.

Feng, W. et al. (2002). The blue active queue management algorithm. IEEE/ACM Transactions on networking. https://ieeexplore.ieee.org/abstract/document/1026008

Floyd, S. y Jacobson, V. (1993). Random Early Detection gateways for Congestion Avoidance. IEEE/ACM Transactions on Networking, 1 (4), pp. 397-413. https://www.icir.org/floyd/papers/early.twocolumn.pdf

Giménez, A. et al. (2022). New RED Type TCP-AQM algorithms based on Beta Distributions drop functions. Appl. Sci. MDPI. https://www.mdpi.com/2076-3417/12/21/11176

Ohsaki, H. y Murata, M. (2002). Steady State Analysis of the RED gateway: stability, Transient Behavior, and Parameter Setting. IEICE Trans. Commun., E85-B, (1), pp. 1-26. https://www.anarg.jp/achievements/annual_report/web2001/papers/oosaki01ieice-RED.pdf

Parra, C. (2010). Análisis del algoritmo red con la teoría de control moderna. Revista de la Facultad de Ingeniería, Universidad Central de Venezuela,25 (1).

Powell, F. G. y Workman, J. (1998). Digital Control of Dynamic Systems. Adison-Wesley Press.

Ryu, S. y Rump, C. (2003). Advances in internet congestion control. IEEE Communications. Third Quarter, 5 (1). https://dl.acm.org/doi/abs/10.1109/COMST.2003.5342228

Srikant, R. (2004). The Mathematics of Internet Congestion Control. Birkäuser.

Welzl, M. (2005). Network Congestion Control. Wiley.

Published

2024-02-23

How to Cite

Parra, C. (2024). Prospective adjustment of a telematics system. Observador Del Conocimiento, 8(4), 42–59. Retrieved from https://revistaoc.oncti.gob.ve/index.php/odc/article/view/403