Electrochemical studies for the deposition of CuGaSe2 using ions citrate as a complexing agent

Authors

  • Luigi Manfredy Universidad de los Andes (ULA)
  • Olga Márquez University of the Andes (UTA)
  • Jairo Márquez University of the Andes (UTA)
  • Yris Martínez University of the Andes (UTA)
  • Yanpiero Balladores University of the Andes (UTA)
  • Santos López University of the Andes (UTA)

Keywords:

semiconductor films, solar cells, electrodeposition

Abstract

The Cu-Ga-Se electrochemical system was studied in 0.5M electrolytic medium of Na2SO4 at pH 2.5 and the influence of citrate ions on the deposition of CuGaSe 2 semiconductor films was studied. The studies by cyclic voltammetry show us a Cu-Ga-Se system complex, with a large number of processes involved in the formation of the film. Based on the voltammetric results, we attempted to synthesize CuGaSe 2 films, using the potentiostatic electrolysis technique, at different deposition potentials and using as electrolytic medium a solution containing: 0.01M SeO 2, 0.01M CuSO4, 0.02M Ga3 + and 0.05M citric acid dissolved in 0.5M Na2SO4.

Downloads

Download data is not yet available.

References

Archer, M. (2002). Photovoltaics and photoelectrochemistry: similarities and differences. Physica E. 14: 61-64.

Chassaing, E.; Vu Quang, K.; Wiart, R. (1986). Kinetics of Copper Electrodeposition in Citrate Electrolytes. Journal of Applied Electrochemistry. 16: 591-604.

Gujar, T.; Shinde, V.; Park, J.; Lee, H.; Jung, K.; Joo, O. (2008). Electrodeposition of photoactive 1D Gallium selenide Quantum Dots. Electrochimica Acta. 54: 829-834.

Jebaraj, J.; Muthuraj, J.; Rasmussen, D.; Suni, I. (2011). Electrodeposition of CuGaSe2 from a Thiocyanate- Containing Electrolyte. Journal of The Electrochemical Society. 158: D54.

Kois, J.; Ganchev, M.; Kaelin, M.; Bereznev, S.; Tzvetkova, E.; Volobujeva, O.; Stratieva, N.; Tiwari, A. (2008). Electrodeposition of Cu-In-Ga Thin Solid Films for Cu(In,Ga)Se2 Based Solar Cells. Thin Solid Films. 516:5948- 5952.

Kroger, F. (1978). Cathodic Deposition and Characterization of Metallic or Semiconducting Binary Alloys or Compounds. Journal of The Electrochemical Society. 125: 2028- 2034.

Lai, Y.; Liu, F.; Kuang, S.; Liu, J.; Zhang, Z.; Li, J.; Liu, Y. (2009). Electrodeposition-Based Preparation of Cu(In,Ga)(Se,S)[sub 2] Thin Films. Electrochemical and Solid State Letters. 12 (9): D65-D67.

Lai, Y.; Liu, J.; Yang, J.; Wang, B.; Liu, F.; Li, J.; Liu, Y. (2011). Incorporation Mechanism of Indium and Gallium during Electrodeposition of Cu(In,Ga)Se2 Thin Film. Journal of The Electrochemical Society. 158: D704-D709. Leisch, J.; Abushama, J.; Turner, J. A. (2005). Investigation of CuGaSe2 Thin Films for Photoelectrochemical Water Splitting Devices. En 208th ECS Meeting Abstracts (Comp.). Los Ángeles, EEUU: The Electrochemical Society. 821 pp.

Lizama-Tzec, F.; Canché-Canul, L.; Oskam, G. (2011). Electrodeposition of copper into trenches from a citrate plating bath. Electrochimica Acta. 56: 9391–9396.

Mishra, K.; Rajeshwar, K. (1989). A Voltammetric Study of the Electrodeposition Chemistry in the Cu + In + Se System. Journal of Electroanalytical Chemistry. 271: 279- 294.

Oda, Y.; Minemoto, T.; Takakura, H. (2008). Journal of The Electrochemical Society. 155: H292.

Oliveira, M.; Azecevedo, M.; Cunha, A. (2002). A Voltammetric Study of the Electrodeposition of CuInSe2 in a Citrate Electrolyte. Thin Solid Films. 405: 129-134.

Pottier, D.; Maurin, G. (1989). Preparation of Polycristalline Thin Films of CuInSe2 by Electrodeposition. Journal of Applied Electrochemistry. 19:361-367.

Pourbaix, M. (1974). Atlas of Electrochemical Equilibria in Aqueous Solutions (Second Edition). Paris: NACE International.

Rajeshwar, K.; Myung, N.; Tacconi, N. (1994). A combined Voltammetric and Electrochemical Quartz Crystal Microgravimetriy Study of the reduction of aqueous Se(IV) at gold. Journal of Electroanalytical Chemistry. 375: 109- 115.

Rode, S.; Henninot, C.; Vallières, C.; Matlosz, M. (2004). Complexation Chemistry in Copper Plating from Citrate Baths. Journal of The Electrochemical Society. 15:C405-C411.

Rusu, M.; Doka, S.; Kaufmann, C.; Grigorieva, N.; Schedel-Niedrig, T.; Lux- Steiner, M. (2005). Solar cells based on CCSVT-grown CuGaSe2— Absorber and Device Properties. Thin Solid Films. 480: 341– 346.

Santos, M.; Machado, S. (2004). Microgravimetric, Rotating Ring-disc and Voltammetric Studies of the Underpotential Deposition of Selenium on Polycrystalline Platinum Electrodes. Journal of Electroanalytical Chemistry. 567: 203–210.

Skyllas-Kazacos, M. (1983). Electrodeposition of CdSe and CdSe+CdTe thin films from cyanide solutions. Journal of Electroanalytical Chemistry. 148: 233-239.

Société de Chimie Physique. (1 9 5 7) . Journal Chimie Physique ( Vol. 54). Paris. 597 pp.

Thouin, L.; Rouquette-Sanchez, S.; Vedel, J. (1993). Electrodeposition of Copper- Selenium binaries in Citric Acid Medium. Electrochimica Acta. 38:2387- 2394.

Wang, C.; Cheng, K.; Yang, S.; Hwang, F. (1985). The Growth and Characterization of CdTe Epitaxial Layers on CdTe and InSb by Metalorganic Chemical Vapor Deposition. Journal of Applied Physics. 58: 757-762.

Published

2024-05-02

How to Cite

Manfredy, L., Márquez, O., Márquez, J., Martínez, Y., Balladores, Y., & López, S. (2024). Electrochemical studies for the deposition of CuGaSe2 using ions citrate as a complexing agent. Observador Del Conocimiento, 2(5), 19–32. Retrieved from https://revistaoc.oncti.gob.ve/index.php/odc/article/view/479

Issue

Section

Artículos

Most read articles by the same author(s)