Optimization of work and energy efficiency in a mixed or limited pressure cycle
Keywords:
Dual cycle, compression ratio, thermal efficiency, power production, net work, maximum temperature, minimum temperatureAbstract
In the present work we analyzed the influence of some thermodynamic parameters such as compression ratio, pressure ratio, intake closure ratio and temperatures on thermal performance and net power in the standard dual air cycle, which is a highly useful thermodynamic cycle in the modeling of cyclic power production. The study of
the equations deducted allows to predict the operating conditions that allow to maximize the net power and to increase the efficiency of the dual cycle. For fixed values of
the maximum and minimum cycle temperatures and the intake close ratio, the net power increases with the engine compression ratio, reaches a maximum and then decreases. The value of the maximum compression ratio dependson the intake closure ratio, the working substance and the maximum and minimum temperatures.
Downloads
References
-Broatch, A. et al. (2019). New Approach to Study the
Heat Transfer in Internal Combustion Engines by 3D
Modeling. Int. J. Therm. Sci. Vol. 138, p.405. https://
doi.org/10.1016/j.ijthermalsci.2019.01.006.
-Burghardt, M.D.(1984). Ingeniería Termodinámica.
México, D.F: Editorial Harla.
-Cengel, Y. y Boles, M.(2012). Termodinámica. México,
D.F: McGraw-Hill Interamericana, S.A.
-Chen, L. et al. (2020). Performance of Universal Reciprocating Heat-Engine Cycle with Variable Specific Heats
Ratio of Working Fluid. Entropy. Vol. 22, p. 397. https://
doi.org/10.3390/e22040397
-Crespi, F. et al. (2020). Potential of Supercritical Carbon
Dioxide Power Cycles to Reduce the Levelised Cost of
Electricity of Contemporary Concentrated Solar Power
Plants. Applied Sciences. Vol. 10, N° 15, p.5049. https://
doi.org/10.3390/app10155049.
-Curzon, F.L y Ahlborn, B. (1975). Efficiency of a Carnot
Engine at maximum power output.
Am.J.Phys.Vol. 43, N°22, p. 22. https://doi.
org/10.1119/1.10023.
-Feidt, M. y Costea, M. (2019). Progress in Carnot and
Chambadal Modeling of Thermomechanical Engine
by Considering Entropy Production and Heat Transfer.
Entropy. Vol.21, p. 1232. https://doi.org/10.3390/
e21121232.
-Liu, Z. y Karimi, I. (2019). Simulation of a Combined
Cycle Gas Turbine Power Plant in Aspen HYSYS. Energy
Procedia. Vol.158, p. 3620. https://doi.org/10.1016/j.
egypro.2019.01.901.
-Malaver, M. (2012). Optimización del trabajo en un ciclo Brayton con irreversibilidades. Ingeniería, Vol.22,
N°1, p.69. https://doi.org/10.15517/ring.v22i1.8395.
-Méndez, L. et al. (2019). Análisis Termodinámico de
las Turbinas de Vapor para los Ciclos Ultracríticos,
Supercríticos, Subcríticos y Geotérmicos. Información
Tecnológica. Vol. 30, N°4, p. 237. http://dx.doi.
org/10.4067/S0718-07642019000400237.
-Merchán, R.P. et al. (2020). On-Design Pre-Optimization and Off-Design Analysis of Hybrid Brayton Thermosolar Tower Power Plants for Different Fluids and
Plant Configurations. Renewable and Sustainable
Energy Reviews.Vol.119. https://doi.org/10.1016/j.
rser.2019.109590.
-Oh, S. et al. (2020). Entropy, Free Energy, and Work of
Restricted Boltzmann Machines. Entropy. Vol. 22, p.
https://doi.org/10.3390/e22050538.
-Ponmurugan, M. (2019). Realistic Thermal Heat
Engine Model and its Generalized Efficiency. arXiv:1912.12949v1. https://arxiv.org/abs/1912.12949.
-Wark, K. J. y Richards, D. (2001). Termodinámica. Madrid: McGraw-Hill Interamericana, S.A.
-Zhu F. et al. (2019). Thermodynamic Analysis and
Optimization of an Irreversible Maisotsenko-Diesel
Cycle. J. Therm. Sci. Vol. 28, N°4, p. 659. https://doi.
org/10.1007/s11630-019-1153-1.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Manuel Malaver
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.